Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 688
Filtrar
1.
Anal Methods ; 16(16): 2424-2443, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38592715

RESUMO

This review summarizes recent developments in amperometric biosensors, based on one-step electrodeposited organic-inorganic hybrid layers, used for analysis of low molecular weight compounds. The factors affecting self-assembly of one-step electrodeposited films, methods for verifying their composition, advantages, limitations and approaches affecting the electroanalytical performance of amperometric biosensors based on organic-inorganic hybrid layers were systemized. Moreover, issues related to the formation of one-step organic-inorganic hybrid functional layers with different structures in biosensors produced under the same electrodeposition parameters are discussed. The systemized dependencies can support the preliminary choice of functional sensing layers with architectures tuned for specific biotechnology and life science applications. Finally, the capabilities of one-step electrodeposition of organic-inorganic hybrid functional films beyond amperometric biosensors were highlighted.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Galvanoplastia/métodos , Nanoestruturas/química , Eletrodos
2.
Environ Sci Pollut Res Int ; 30(57): 119893-119902, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37932614

RESUMO

The electroplating process of copper pyrophosphate (Cu2P2O7) results in the production of a large volume of wastewater that contains a high concentration of copper (Cu). Currently, conventional lime precipitation creates a substantial amount of secondary pollution, which adds extra economic and environmental burdens. In this study, we suggest a straightforward method for on-site recovery of Cu from Cu2P2O7 electroplating wastewater. By optimizing various parameters, characterizing the resulting product, assessing its electroplating capabilities, and analyzing the speciation during the reaction, we comprehensively investigated the feasibility and mechanism of this technique. The results demonstrated that, under the optimal conditions (Cu/P molar ratio of 0.96, pH of 5.0, and a reaction time of 5.0 min), the concentration of residual Cu remained stable between 22.2 and 27.7 mg/L, even when the initial Cu concentrations varied. The addition of Cu triggered a series of hydrolysis and ionization reactions, primarily leading to the formation of Cu2P2O7·3H2O. The harvested Cu2P2O7·3H2O proved to be suitable for practical electroplating applications, exhibiting comparable performance to commercially available Cu2P2O7·3H2O. This demonstrates the feasibility of recovering high-purity Cu2P2O7·3H2O from copper electroplating wastewater, offering a promising approach for on-site copper reuse and concurrently reducing the demand for natural copper resources. Furthermore, this approach significantly reduces the generation of solid waste, aligning with the principles of sustainable development.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Cobre/química , Galvanoplastia/métodos , Difosfatos , Poluentes Químicos da Água/análise
3.
Chemosphere ; 343: 140142, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37716565

RESUMO

The application of PbO2 for electrochemical oxidation technology is limited by its low electrocatalytic activity and short service life. Herein, based on the facile one-step electrodeposition, we prepared a boron carbide (B4C) and cerium (Ce) co-modified Ti/PbO2 (Ti/PbO2-B4C-Ce) electrode to overcome these shortcomings. Compared with Ti/PbO2 electrode, the denser surface is displayed by Ti/PbO2-B4C-Ce electrode. Meanwhile, electrochemical characterization indicates that the introduction of B4C and Ce significantly enhance the electrochemical performance of PbO2 electrode. In degradation experiments, under optimized conditions (current density 20 mA cm-2, pH 9, 0.15 M Na2SO4 and 30 °C), the fully degradation of tetracycline (TC) can be completed within 30 min. Furthermore, the trapping experiment demonstrates that ∙OH and SO4·- radicals have a synergistic effect in the degradation process of TC. Based on results of liquid chromatography-mass spectrometer, the generated ·OH preferentially attacks amides, phenols and conjugated double bond groups in TC. Importantly, Ti/PbO2-B4C-Ce electrode maintains a constant degradation efficiency even after 10 recycling tests, and its service life is 2.4 times of traditional Ti/PbO2 electrode. Hence, Ti/PbO2-B4C-Ce electrode is a promising electrode for degradation of organic wastewater containing amides, phenols, and conjugated double bond groups.


Assuntos
Cério , Poluentes Químicos da Água , Galvanoplastia/métodos , Óxidos/química , Titânio/química , Poluentes Químicos da Água/análise , Oxirredução , Antibacterianos , Tetraciclina , Eletrodos , Amidas , Fenóis
4.
Colloids Surf B Biointerfaces ; 225: 113287, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37004387

RESUMO

The main goal of this work is to open new perspectives in the field of electrodeposition and provide green alternatives to the electroplating industry. The effect of different anions (SO42-, ClO3-, NO3-, ClO4-, BF4-, PF6-) in solution on the electrodeposition of copper was investigated. The solutions, containing only the copper precursor and the background electrolyte, were tailored to minimize the environmental impact and reduce the use of organic additives and surfactants. The study is based on electrochemical measurements carried out to verify that no metal complexation takes place. We assessed the nucleation and growth mechanism, we performed a morphological characterization through scanning electron microscopy and deposition efficiency by measuring the film thickness through X-ray fluorescence spectroscopy. Significant differences in the growth mechanism and in the morphology of the electrodeposited films, were observed as a function of the background electrolyte.


Assuntos
Cobre , Galvanoplastia , Cobre/química , Galvanoplastia/métodos , Microscopia Eletrônica de Varredura , Ânions , Eletrólitos/química
5.
Small ; 18(47): e2203555, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36192153

RESUMO

Metallic barcode nanowires (BNWs) composed of repeating heterogeneous segments fabricated by template-assisted electrodeposition can offer extended functionality in magnetic, electrical, mechanical, and biomedical applications. The authors consider such nanostructures as a 3D system of magnetically interacting elements with magnetic behavior strongly affected by complex magnetostatic interactions. This study discusses the influence of geometrical parameters of segments on the character of their interactions and the overall magnetic behavior of the array of BNWs having alternating magnetization, because the Fe and Au segments are made of Fe-Au alloys with high and low magnetizations. By controlling the applied current densities and the elapsed time in the electrodeposition, the dimension of the Fe-Au BNWs can be regulated. This study reveals that the influence of the length of magnetically weak Au segments on the interaction field between nanowires is different for samples with magnetically strong 100 and 200 nm long Fe segments using the first-order reversal curve (FORC) diagram method. With the help of micromagnetic simulations, three types of magnetostatic interactions in the BNW arrays are discovered and analy. This study demonstrates that the dominating type of interaction depends on the geometric parameters of the Fe and Au segments and the interwire and intrawire distances.


Assuntos
Nanoestruturas , Nanofios , Nanofios/química , Nanoestruturas/química , Galvanoplastia/métodos , Magnetismo
6.
J Appl Biomater Funct Mater ; 20: 22808000221103970, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35946407

RESUMO

In cases of severe bone tissue injuries, the use of metallic bioimplants is quite widespread due to their high strength, high fracture toughness, hardness, and corrosion resistance. However, they lack adequate biocompatibility and show poor metal-tissue integration during the post-operative phase. To mitigate this drawback, it is beneficial to add a biocompatible polymer layer to ensure a quick growth of cell or tissue over the surface of metallic bioimplant material. Furthermore, this additional layer should possess good adherence with the underlying material and also accompany a rapid bonding between the tissue and the implant material, in order to reduce the recovery time for the patient. Therefore, in this work, we report a novel green electroplating route for growing porous hydroxyapatite-brushite coatings on a stainless steel surface. The malic acid used for the production of hydroxyapatite-brushite coatings has been obtained from an extract of locally available apple fruit (Malus domestica). We demonstrate the effect of electroplating parameters on the structural morphology of the electroplated composite layer via XRD, SEM with EDS, and FTIR characterization techniques and report an optimized set of electroplating parameters that will yield the best composite coating in terms of thickness, adherence to substrate and speed. The hemocompatibility and osteocompatibility studies on the electroplated composites coating show this technology's effectiveness and potential applicability in biomedical applications. Compared to other routes reported in the literature, this electroplating route is quicker and yields better composite coatings with faster bone tissue growth potential.


Assuntos
Materiais Revestidos Biocompatíveis , Galvanoplastia , Fosfatos de Cálcio , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Corrosão , Durapatita/química , Galvanoplastia/métodos , Humanos , Propriedades de Superfície , Difração de Raios X
7.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35163817

RESUMO

For decades, Ta/TaN has been the industry standard for a diffusion barrier against Cu in interconnect metallisation. The continuous miniaturisation of transistors and interconnects into the nanoscale are pushing conventional materials to their physical limits and creating the need to replace them. Binary metallic systems, such as Ru-W, have attracted considerable attention as possible replacements due to a combination of electrical and diffusion barrier properties and the capability of direct Cu electroplating. The process of Cu electrodeposition on Ru-W is of fundamental importance in order to create thin, continuous, and adherent films for advanced interconnect metallisation. This work investigates the effects of the current density and application method on the electro-crystallisation behaviour of Cu. The film structure, morphology, and chemical composition were assessed by digital microscopy, atomic force microscopy, scanning and transmission electron microscopies, energy-dispersive X-ray spectroscopy, and X-ray diffraction. The results show that it was possible to form a thin Cu film on Ru-W with interfacial continuity for current densities higher than 5 mA·cm-2; however, the substrate regions around large Cu particles remained uncovered. Pulse-reverse current application appears to be more beneficial than direct current as it decreased the average Cu particle size.


Assuntos
Cobre/química , Galvanoplastia/métodos , Rutênio/química , Tungstênio/química , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Miniaturização , Espectrometria por Raios X , Difração de Raios X
8.
Environ Sci Pollut Res Int ; 29(48): 72196-72246, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35084684

RESUMO

Water pollution by recalcitrant compounds is an increasingly important problem due to the continuous introduction of new chemicals into the environment. Choosing appropriate measures and developing successful strategies for eliminating hazardous wastewater contaminants from industrial processes is currently a primary goal. Electroplating industry wastewater involves highly toxic cyanide (CN), heavy metal ions, oils and greases, organic solvents, and the complicated composition of effluents and may also contain biological oxygen demand (BOD), chemical oxygen demand (COD), SS, DS, TS, and turbidity. The availability of these metal ions in electroplating industry wastewater makes the water so toxic and corrosive. Because these heavy metals are harmful to living things, they must be removed to prevent them from being absorbed by plants, animals, and humans. As a result, exposure to electroplating wastewater can induce necrosis and nephritis in humans and lung cancer, digestive system cancer, anemia, hepatitis, and maxillary sinus cancer with prolonged exposure. For the safe discharge of electroplating industry effluents, appropriate wastewater treatment has to be provided. This article examines and assesses new approaches such as coagulation and flocculation, chemical precipitation, ion exchange, membrane filtration, adsorption, electrochemical treatment, and advanced oxidation process (AOP) for treating the electroplating industry wastewater. On the other hand, these physicochemical approaches have significant drawbacks, including a high initial investment and operating cost due to costly chemical reagents, the production of metal complexes sludge that needs additional treatment, and a long recovery process. At the same time, advanced techniques such as electrochemical treatment can remove various kinds of organic and inorganic contaminants such as BOD, COD, and heavy metals. The electrochemical treatment process has several advantages over traditional technologies, including complete removal of persistent organic pollutants, environmental friendliness, ease of integration with other conventional technologies, less sludge production, high separation, and shorter residence time. The effectiveness of the electrochemical treatment process depends on various parameters, including pH, electrode material, operation time, electrode gap, and current density. This review mainly emphasizes the removal of heavy metals and another pollutant such as CN from electroplating discharge. This paper will be helpful in the selection of efficient techniques for treatment based on the quantity and characteristics of the effluent produced.


Assuntos
Cáusticos , Complexos de Coordenação , Metais Pesados , Poluentes Químicos da Água , Purificação da Água , Animais , Cianetos/química , Galvanoplastia/métodos , Humanos , Metais Pesados/análise , Óleos , Poluentes Orgânicos Persistentes , Esgotos , Solventes , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Água , Poluentes Químicos da Água/análise , Purificação da Água/métodos
9.
J Mater Sci Mater Med ; 32(9): 111, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34453628

RESUMO

This work is focused on integrating nanotechnology with bone tissue engineering (BTE) to fabricate a bilayer scaffold with enhanced biological, physical and mechanical properties, using polycaprolactone (PCL) and gelatin (Gt) as the base nanofibrous layer, followed by the deposition of a bioactive glass (BG) nanofibrous layer via the electrospinning technique. Electrospun scaffolds were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy. Surface area and porosity were evaluated using the nitrogen adsorption method and mercury intrusion porosimetry. Moreover, scaffold swelling rate, degradation rate and in vitro bioactivity were examined in simulated body fluid (SBF) for up to 14 days. Mechanical properties of the prepared scaffolds were evaluated. Cell cytotoxicity was assessed using MRC-5 cells. Analyses showed successful formation of bead-free uniform fibers and the incorporation of BG nanoparticles within fibers. The bilayer scaffold showed enhanced surface area and total pore volume in comparison to the composite single layer scaffold. Moreover, a hydroxyapatite-like layer with a Ca/P molar ratio of 1.4 was formed after 14 days of immersion in SBF. Furthermore, its swelling and degradation rates were significantly higher than those of pure PCL scaffold. The bilayer's tensile strength was four times higher than that of PCL/Gt scaffold with greatly enhanced elongation. Cytotoxicity test revealed the bilayer's biocompatibility. Overall analyses showed that the incorporation of BG within a bilayer scaffold enhances the scaffold's properties in comparison to those of a composite single layer scaffold, and offers potential avenues for development in the field of BTE.


Assuntos
Osso e Ossos/citologia , Nanofibras/química , Engenharia Tecidual , Tecidos Suporte/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Líquidos Corporais/química , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/fisiologia , Células Cultivadas , Cerâmica/química , Cerâmica/farmacologia , Galvanoplastia/métodos , Gelatina/química , Gelatina/farmacologia , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Poliésteres/química , Poliésteres/farmacologia , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Mecânico , Resistência à Tração , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Difração de Raios X
10.
Anal Biochem ; 612: 113956, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32950496

RESUMO

In this study we have developed a new aptasensor for cadmium (Cd2+) detection in water. Gold electrode surface has been chemically modified by electrochemical reduction of diazonium salt (CMA) with carboxylic acid outward from the surface. This was used for amino-modified cadmium aptamer immobilization through carbodiimide reaction. Chemical surface modification was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). This latter was also used for Cd2+ detection. The aptasensor has exhibited a good linear relationship between the logarithm of the Cd2+ concentration and the impedance changes in the range from 10-3 to 10-9 M with a correlation R2 of 0.9954. A high sensitivity was obtained with a low limit of detection (LOD) of 2.75*10-10 M. Moreover, the developed aptasensor showed a high selectivity towards Cd2+ when compared to other interferences such as Hg2+, Pb2+ and Zn2+. The developed aptasensor presents a simple and sensitive approach for Cd2+detection in aqueous solutions with application for trace Cd2+ detection in spring water samples.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/instrumentação , Cádmio/análise , Técnicas Eletroquímicas/métodos , Água/análise , Técnicas Biossensoriais/métodos , Cátions/análise , Compostos de Diazônio/química , Espectroscopia Dielétrica , Eletrodos , Galvanoplastia/métodos , Ouro/química , Limite de Detecção , Reprodutibilidade dos Testes
11.
Molecules ; 26(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379393

RESUMO

Tubular-shaped layer electrodeposition from chitosan-hydroxyapatite colloidal solutions has found application in the field of regeneration or replacement of cylindrical tissues and organs, especially peripheral nerve tissue regeneration. Nevertheless, the quantitative and qualitative characterisation of this phenomenon has not been described. In this work, the colloidal systems are subjected to the action of an electric current initiated at different voltages. Parameters of the electrodeposition process (i.e., total charge exchanged, gas volume, and deposit thickness) are monitored over time. Deposit structures are investigated by scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR). The value of voltage influences structural characteristics but not thickness of deposit for the process lasting at least 20 min. The calculated number of exchanged electrons for studied conditions suggests that the mechanism of deposit formation is governed not only by water electrolysis but also interactions between formed hydroxide ions and calcium ions coordinated by chitosan chains.


Assuntos
Quitosana/química , Durapatita/química , Galvanoplastia/métodos , Hidróxidos/química , Íons/química , Microscopia Eletrônica de Varredura/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Engenharia Tecidual/métodos , Tecidos Suporte/química , Água/química
12.
Chemosphere ; 261: 128157, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33113652

RESUMO

Porous titanium-based PbO2 electrodes were successfully fabricated by pulse electrodeposition method. The primary pulse electrodeposition parameters, including pulse frequency (f), duty ratio (γ), average current density (Ja) and electrodeposition time (t) were considered in this study. An orthogonal experiment was designed based on those four factors and in three levels. SEM images and XRD results suggest that the surface morphology and structure of PbO2 electrodes could be easily changed by varying pulse electrodeposition parameters. Orthogonal analysis reveals that the increase of f and Ja could decrease the average grain size of PbO2 electrodes, which is conducive to create more active sites and promote the generation of hydroxide radicals. The electrochemical degradation of Azophloxine was carried out to evaluate the electrochemical oxidation performance of pulse electrodeposited electrodes. The results indicate that the influences of four factors can be ranked as follow: Ja >γ≈ t > f. The higher f, larger Ja and longer t could facilitate the optimization of the integrated electrochemical degradation performance of prepared PbO2 electrode. The accelerated life time is dominated by Ja and t, coincident with the average weight increase of ß-PbO2 layer. The optimal parameters of pulse electrodeposition turn out to be: f = 50 Hz, γ = 30%, Ja = 25 mA cm-2, t = 60 min. Together, the consequences of the experiments give assistance to uncover and roughly conclude the mechanism of pulse electrodeposition.


Assuntos
Galvanoplastia/métodos , Chumbo/química , Modelos Teóricos , Óxidos/química , Titânio/química , Compostos Azo/análise , Eletrodos , Naftalenossulfonatos/análise , Oxirredução , Porosidade , Propriedades de Superfície , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos
13.
J Vis Exp ; (163)2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-33044463

RESUMO

Composite plating with particles embedded into the metal matrix can enhance the properties of the metal coating to make it more or less conductive, hard, durable, lubricated or fluorescent. However, it can be more challenging than metal plating, because the composite particles are either 1) not charged so they do not have a strong electrostatic attraction to the cathode, 2) are hygroscopic and are blocked by a hydration shell, or 3) too large to remain stagnate at the cathode while stirring. Here, we describe the details of a bathless plating method that involves anode and cathode nickel plates sandwiching an aqueous concentrated electrolyte paste containing large hygroscopic phosphorescent particles and a hydrophilic membrane. After applying a potential, the nickel metal is deposited around the stagnant phosphor particles, trapping them in the film. The composite coatings are characterized by optical microscopy for film roughness, thickness and composite surface loading. In addition, fluorescence spectroscopy can be used to quantify the illumination brightness of these films to assess the effects of various current densities, coating duration and phosphor loading.


Assuntos
Galvanoplastia/métodos , Condutividade Elétrica , Eletroquímica , Eletrodos , Processamento de Imagem Assistida por Computador , Níquel/química , Espectrometria de Fluorescência , Molhabilidade
14.
J Chromatogr A ; 1628: 461486, 2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32822970

RESUMO

In this work, an inexpensive, fast, and selective ionic liquid modified graphene oxide (GO-IL) was synthesized and electrochemically deposited on the inner surface of a stainless-steel tube. Then, it was applied for circulated headspace in-tube solid-phase microextraction (CHS-IT-SPME) of naphthalene from honey samples. Next, the coated tube was replaced with the sample loop of a six-port injection valve for on-line desorption and further HPLC-UV analysis of naphthalene. The sorbent was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FT-IR), and energy-dispersive X-ray spectroscopy (EDX). Different parameters affecting the procedure efficiency, including extraction temperature, extraction time, salt concentration, and sample volume were optimized by central composite design and response surface methodology. Under the optimum conditions, the calibration curve was linear within the range of 0.3-200 ng mL-1, with a regression coefficient of 0.9972. The limits of detection (LOD) and quantification (LOQ) were found to be 0.1 ng mL-1 and 0.3 ng mL-1, respectively. Intra-day and inter-day RSDs% for three replicate measurements of naphthalene at the concentration of 10 ng mL-1 were obtained 3.9% and 5.0%, respectively. Also, good tube-to-tube reproducibility of 5.3% was achieved. Finally, the method was successfully applied for measuring trace amounts of naphthalene in honey samples. Relative recoveries were calculated within the range of 90.0-106.5%, indicating excellent efficiency of the proposed method.


Assuntos
Cromatografia Líquida/métodos , Galvanoplastia/métodos , Grafite/química , Mel/análise , Líquidos Iônicos/química , Naftalenos/isolamento & purificação , Sistemas On-Line , Microextração em Fase Sólida/métodos , Cromatografia Líquida de Alta Pressão , Limite de Detecção , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Reprodutibilidade dos Testes
15.
Chemosphere ; 259: 127488, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32640376

RESUMO

A Ce-doped Ti/PbO2 electrode was prepared in a deposition solution containing Ce3+ and Pb2+ ions by electrodeposition, and the surface morphology, crystal structure and elemental states were characterized by SEM, XRD and XPS. The electrode was used to investigate the simultaneous degradation of three phthalate esters (PAEs), i.e., dimethyl phthalate (DMP), diethyl phthalate (DEP) and dibutyl phthalate (DBP) in synthetic wastewaters. The results showed that the electrode exhibited excellent electrocatalytic activity and good reusability and stability, and the removal efficiencies of 5 mg L-1 DBP, DMP and DEP in 0.05 M Na2SO4 (pH 7) reached 98.2%, 95.8% and 81.1% at current density of 25 mA cm-2 after 10 h degradation, respectively. The degradation processes followed pseudo first-order kinetic model very well, and the observed rate constants of DBP, DEP and DMP were 0.42, 0.40 and 0.29 h-1, respectively. The energy consumption in three PAEs degradation was also assessed. The main degradation products of the three PAEs were identified by using liquid chromatography-tandem mass spectrometry, and the possible degradation pathways mainly included dealkylation, hydroxyl addition, decarboxylation and benzene ring cleavage. This work is a promising candidate for efficient treatment of multiple PAEs in wastewater and protection of the aquatic ecological environment.


Assuntos
Cério/química , Galvanoplastia/métodos , Recuperação e Remediação Ambiental/métodos , Ácidos Ftálicos/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Dibutilftalato/química , Eletrodos , Ésteres/química , Chumbo/química , Óxidos/química , Titânio/química
16.
J Mater Sci Mater Med ; 31(8): 69, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32705408

RESUMO

In recent years, the engineering of biomimetic cellular microenvironments has emerged as a top priority for regenerative medicine, being the in vitro recreation of the arcade-like cartilaginous tissue one of the most critical challenges due to the notorious absence of cost- and time-efficient microfabrication techniques capable of building 3D fibrous scaffolds with precise anisotropic properties. Taking this into account, we suggest a feasible and accurate methodology that uses a sequential adaptation of an electrospinning-electrospraying set up to construct a hierarchical system comprising both polycaprolactone (PCL) fibres and polyethylene glycol sacrificial microparticles. After porogen leaching, the bi-layered PCL scaffold was capable of presenting not only a depth-dependent fibre orientation similar to natural cartilage, but also mechanical features and porosity proficient to encourage an enhanced cell response. In fact, cell viability studies confirmed the biocompatibility of the scaffold and its ability to guarantee suitable cell adhesion, proliferation and migration throughout the 3D anisotropic fibrous network during 21 days of culture. Additionally, likewise the hierarchical relationship between chondrocytes and their extracellular matrix, the reported PCL scaffold was able to induce depth-dependent cell-material interactions responsible for promoting a spatial modulation of the morphology, alignment and density of the cells in vitro.


Assuntos
Cartilagem/citologia , Engenharia Tecidual , Tecidos Suporte/química , Animais , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Biomimética , Cartilagem/efeitos dos fármacos , Cartilagem/fisiologia , Bovinos , Sobrevivência Celular , Células Cultivadas , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrócitos/fisiologia , Materiais Revestidos Biocompatíveis/síntese química , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Galvanoplastia/métodos , Matriz Extracelular/química , Matriz Extracelular/efeitos dos fármacos , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Microtecnologia/métodos , Poliésteres/química , Poliésteres/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Medicina Regenerativa/instrumentação , Medicina Regenerativa/métodos , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos
17.
Sensors (Basel) ; 20(6)2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32245163

RESUMO

One of the major issues in microfluidic biosensors is biolayer deposition. Typical manufacturing processes, such as firing of ceramics and anodic bonding of silicon and glass, involve exposure to high temperatures, which any biomaterial is very vulnerable to. Therefore, current methods are based on deposition from liquid, for example, chemical bath deposition (CBD) and electrodeposition (ED). However, such approaches are not suitable for many biomaterials. This problem was partially resolved by introduction of ceramic-polymer bonding using plasma treatment. This method introduces an approximately 15-min-long window for biomodification between plasma activation and sealing the system with a polymer cap. Unfortunately, some biochemical processes are rather slow, and this time is not sufficient for the proper attachment of a biomaterial to the surface. Therefore, a novel method, based on plasma activation after biomodification, is introduced. Crucially, the discharge occurs selectively; otherwise, it would etch the biomaterial. Difficulties in manufacturing ceramic biosensors could be overcome by selective surface modification using plasma treatment and bonding to polymer. The area of plasma modification was investigated through contact-angle measurements and Fourier-transform infrared (FTIR) analyses. A sample structure was manufactured in order to prove the concept. The results show that the method is viable.


Assuntos
Materiais Biocompatíveis/química , Técnicas Biossensoriais , Microfluídica/métodos , Polímeros/química , Dimetilpolisiloxanos/química , Galvanoplastia/métodos
18.
Sensors (Basel) ; 20(6)2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32192226

RESUMO

In this review article, we are going to present an overview on possible applications of light-addressable electrodes (LAE) as actuator/manipulation devices besides classical electrode structures. For LAEs, the electrode material consists of a semiconductor. Illumination with a light source with the appropiate wavelength leads to the generation of electron-hole pairs which can be utilized for further photoelectrochemical reaction. Due to recent progress in light-projection technologies, highly dynamic and flexible illumination patterns can be generated, opening new possibilities for light-addressable electrodes. A short introduction on semiconductor-electrolyte interfaces with light stimulation is given together with electrode-design approaches. Towards applications, the stimulation of cells with different electrode materials and fabrication designs is explained, followed by analyte-manipulation strategies and spatially resolved photoelectrochemical deposition of different material types.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Luz , Semicondutores , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Materiais Revestidos Biocompatíveis/síntese química , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/provisão & distribuição , Materiais Revestidos Biocompatíveis/uso terapêutico , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Galvanoplastia/instrumentação , Galvanoplastia/métodos , Desenho de Equipamento , Humanos , Iluminação/instrumentação , Iluminação/métodos , Microtecnologia/métodos
19.
ACS Appl Mater Interfaces ; 12(10): 12018-12029, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32037804

RESUMO

Electrophoretically deposited (EPD) polymer-based coatings have been extensively reported as reservoirs in medical devices for delivery of therapeutic agents, but control over drug release remains a challenge. Here, a simple but uncommon assembly strategy for EPD polymer coatings was proposed to improve drug release without introducing any additives except the EPD matrix polymer precursor. The added value of the proposed strategy was demonstrated by developing a novel EPD silk fibroin (SF) coating assembled from pre-assembled SF nanospheres for an application model, that is, preventing infections around percutaneous orthopedic implants via local delivery of antibiotics. The EPD mechanism of this nanosphere coating involved oxidation of water near the substrate to neutralize SF nanospheres, resulting in irreversible deposition. The deposition process and mass could be easily controlled using the applied EPD parameters. In comparison with the EPD SF coating assembled in a conventional way (directly obtained from SF molecule solutions), this novel coating had a similar adhesion strength but exhibited a more hydrophobic nanotopography to induce better fibroblastic response. Moreover, the use of nanospheres as building blocks enabled 1.38 and 21 times enhancement on the antibiotic release amount and time (of 95% maximum dug release), respectively, while retaining drug effectiveness and showing undetectable cytotoxicity. This unexpected release kinetics was found attributable to the electrostatic and hydrophobic interactions between the drug and nanospheres and a negligible initial dissolution effect on the nanosphere coating. These results illustrate the promising potential of the pre-assembled strategy on EPD polymer coatings for superior control over drug delivery.


Assuntos
Materiais Revestidos Biocompatíveis/química , Sistemas de Liberação de Medicamentos/métodos , Galvanoplastia/métodos , Fibroínas/química , Nanosferas/química , Animais , Antibacterianos/química , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Camundongos , Células NIH 3T3 , Staphylococcus aureus/efeitos dos fármacos , Vancomicina/química , Vancomicina/farmacocinética , Vancomicina/farmacologia
20.
J Vis Exp ; (155)2020 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-32009655

RESUMO

Giant vesicles obtained from phospholipids and copolymers can be exploited in different applications: controlled and targeted drug delivery, biomolecular recognition within biosensors for diagnosis, functional membranes for artificial cells, and development of bioinspired micro/nano-reactors. In all of these applications, the characterization of their membrane properties is of fundamental importance. Among existing characterization techniques, micropipette aspiration, pioneered by E. Evans, allows the measurement of mechanical properties of the membrane such as area compressibility modulus, bending modulus and lysis stress and strain. Here, we present all the methodologies and detailed procedures to obtain giant vesicles from the thin film of a lipid or copolymer (or both), the manufacturing and surface treatment of micropipettes, and the aspiration procedure leading to the measurement of all the parameters previously mentioned.


Assuntos
Galvanoplastia/métodos , Lipossomas Unilamelares/química , Animais , Bovinos , Sistemas de Liberação de Medicamentos , Imageamento Tridimensional , Lipossomos , Micromanipulação , Polímeros/química , Pressão , Soroalbumina Bovina/química , Estresse Mecânico , Sucção , Compostos de Estanho/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...